Fallible
hello@fallible.

Code-Audit-Report of Ente’s museum GitHub Repository
19-04-2023

Introduction

Scope

Security Vulnerabilities
SV-ENTE-001 - Using math/random instead of crypto/random for generating OTP
nd referral . (Medium

SV-ENTE-002 - Use of COPY .. command in Dockerfile (Low
SV-ENTE-003 - Use of USER command was missing in Dockerfile (Low)

Security Code Smells
SCS-ENTE-001 - Access-Control-Allow-Origin (ACAQ) set to * (Info)

SCS-ENTE-002 - Sensitive Tokens are passed in query params, which can be
logaed. (Info

SCS-ENTE-003 - Character Injection attack possibility. (Info

SCS-ENTE-04 - Email template not specifying possibility of a 3rd party trigger (Info)
Security Recommendations

SR-ENTE-001 - Clear note on how passwords are handled. (Info)

SR-ENTE-002 - Delete the commit history before making the repo public. (Info)

Notes
Conclusion

Introduction

The Ente team contacted us for the audit of their backend server hosted at
https://github.com/ente-io/museum. The access was granted to a senior researcher at our
firm using a secure end-to-end encrypted communication tool. The repository at the commit
hash 5140fbe72d0be64c3efedf556d54723d03d0c10c had approximately 21k lines of code.

The audit was conducted during the period of 15th February to 15th April with manual code
audits as the main focus but the tools at disposal were not limited and the researchers were
free to use static and dynamic analysis tools as well. To make the audit more sensitive, a live
account was created and used as well to verify certain possibilities that may arise due to the
vulnerability in the code. Severe issues, if suspected, were quickly discussed over a secure
channel with the Ente team to conclude if it needed more attention or not. The entire review
was conducted in 46 hours.

The report below details the findings in three main segments Security Vulnerabilities (SV),
Security Code Smells (SCS) and Security Recommendations (SR).

19.04.2023 1/8

https://fallible.co/
https://github.com/ente-io/museum

Fallible
hello@fallible.

Scope

e Backend code audits
o SV:ldentifying existing security vulnerabilities in the backend server code
hosted at https://github.com/ente-io/museum
o SCS: Identifying security code smells in the same repository since
proactive programming helps reduce cyber security incidents.
o SR: Security recommendations for maintaining an open source project
specific to this project.

https://fallible.co/
https://github.com/ente-io/museum

Fallible
hello@fallible.

Security Vulnerabilities

SV-ENTE-001 - Using math/random instead of crypto/random for generating
OTP and referral code. ()

Note: In the latest commit, we can see the math/random has already been replaced
with crypto/random by the ente team by identifying the issue themselves.

Using math/random instead of crypto/random to generate one-time passwords
(OTP) and referral codes is a bad practice because math/random generates

pseudo-random numbers that are not cryptographically secure. This means that the
numbers generated are not truly random and can be predicted or manipulated, making them
vulnerable to attacks.

An attacker can easily guess or brute-force the OTP or referral code if math/random is
used. In contrast, crypto/random generates cryptographically secure random bytes that

are unpredictable and uniformly distributed, making them much harder to guess or
manipulate.

Someone can identify the use of math/random in a GitHub repository by reviewing the
code and looking for instances where random numbers are generated. The code can then
be audited to determine whether math/random or crypto/random is used.
Alternatively, one can use automated code analysis tools or security scanners to detect
potential security vulnerabilities in the code.

SV-ENTE-002 - Use of corY . . command in Dockerfile (Low)

When you use the “cOPY . .” command in a Dockerfile, you are copying the entire
context of the build directory into the container image. This includes all files and directories
in the directory where the Dockerfile is located. This can potentially include sensitive
information, such as configuration files, credentials, and other secrets.

So, it is recommended to either copy the exact files and directories that are needed or
explicitly ignore sensitive files via . dockerignore file.

https://fallible.co/

Fallible
hello@fallible.

SV-ENTE-003 - Use of USER command was missing in Dockerfile (Low)

The USER instruction in a Dockerfile allows you to specify the user context under which the
commands in the Dockerfile and the container itself will run. Specifying a user context is
important from a security perspective, because it helps to reduce the potential impact of any
security vulnerabilities or exploits in the container.

Here are some of the reasons why using a USER instruction is important for security in
Docker:

1. Privilege escalation: By default, Docker containers run as root, which gives them
access to all resources on the host system. If a container is compromised, an
attacker could potentially use this access to escalate their privileges and gain control
of the host system. By specifying a non-root user with limited permissions, you can
reduce the impact of any such attacks.

2. File system permissions: When files are created inside a container, their ownership
and permissions are determined by the user context under which the container is
running. If the container is running as root, any files that are created will be owned by
root and may have overly permissive permissions. By specifying a non-root user with
appropriate permissions, you can ensure that files are created with the correct
ownership and permissions.

3. Compliance requirements: Some security compliance frameworks, such as CIS
Docker Benchmark, require that containers run as non-root users to meet security
best practices.

To use a USER instruction in your Dockerfile, you should first create a user and set

appropriate permissions for any files and directories that the container will access. You can
then use the USER instruction to switch to this non-root user in your Dockerfile.
For example, here is an example Dockerfile that uses a non-root user:

FROM ubuntu
create a non-root user with limited permissions
RUN useradd --create-home myuser

WORKDIR /home/myuser

set appropriate permissions on any files and directories
RUN chown -R myuser:myuser /home/myuser

switch to the non-root user context

USER myuser

run any commands under the non-root user context
CMD ["echo", "Hello, world!"™]

https://fallible.co/

Fallible
hello@fallible.

By using a non-root user in your Dockerfile, you can help to reduce the impact of security
vulnerabilities and exploits in your container, and meet security compliance requirements.

See

e MITRE, CWE-284 - Improper Access Control

e nginxinc/nginx-unprivileged: Example of a non-root container by default
e Microsoft docs, When to use ContainerAdmin and ContainerUser user accounts

Security Code Smells

SCS-ENTE-001 - Access-Control-Allow-Origin (ACAO) set to * (Info)

Path: /museum/cmd/museum/main.go

Access-Control-Allow-Origin (ACAOQ) is a header that is used in HTTP responses to indicate
which origins are allowed to access the resources of a web page. The "*" value for the
ACAO header means that any origin is allowed to access the resource, which can potentially
cause security issues.

The main security risk associated with setting ACAO to "*" is that it can allow cross-site
scripting (XSS) attacks. XSS attacks occur when an attacker injects malicious code into a
web page, which is then executed by unsuspecting users who access the page. By setting
ACAO to ™", an attacker can potentially execute code on any website that accesses the
resource, regardless of whether it is intended to do so or not.

To mitigate this risk, it is recommended that you set the ACAO header to the specific
origin(s) that are allowed to access the resource. This can be done by specifying the
origin(s) in the header value, like this:

c.Writer.Header () .Set ("Access-Control-Allow-Origin",
"https://example.com")

Although no other cookies than CloudFlare load balancer cookies exist at the moment, it is
recommended to avoid using Access Control Allow Origin with * to prevent any potential
security risks.

https://fallible.co/
https://cwe.mitre.org/data/definitions/284.html
https://hub.docker.com/r/nginxinc/nginx-unprivileged
https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/container-security#when-to-use-containeradmin-and-containeruser-user-accounts

Fallible
hello@fallible.

SCS-ENTE-002 - Sensitive Tokens are passed in query params, which can be

logged. (Info)
File: auth.go
Example:
func GetToken(c *gin.Context) string {
token := c.GetHeader ("X-Auth-Token")
if token == "" {
token = c.Query("token")

}

return token

One of the main risks of passing sensitive tokens in query parameters is that they can be
easily logged by various components along the request/response chain. This includes web
servers, proxies, and even client-side tools such as web browsers. If the token is logged, it
could potentially be exposed to unauthorized third parties, putting the security of the system
and the data it protects at risk.

SCS-ENTE-003 - Character Injection attack possibility. (Info)

Example:
1. filePath := c.tempStorage + "/" + fileName

Or

2. fmt.Sprintf("%$s:%s:%s", app, token, *jwtClaimScope)
fmt.Sprintf ("$s:%s", app, token)

Since "app’ and "token" can be manipulated by the user, there is a real chance of the user
passing a string like “aa:123” which contains a colon as part of the " token " there by
injecting the third value from their end. However we found that this will not occur in this
particular case as the token in these two statements differ significantly, one is string while the
other being a json string, so such an injection is not possible here. But we suggest not to
encourage certain string manipulation techniques (plain concatenation or key creation with
colon as a separator where users can control the values) as in future this might pose a real
problem.

https://fallible.co/

Fallible
hello@fallible.

SCS-ENTE-04 - Email template not specifying possibility of a 3rd party
trigger (Info)

There is a possibility that any 3rd party can trigger any sign in OTP emails to anyone if they
know the email address. And since this is unavoidable due the nature of the activity taking
place right before authorization. Usually the prudent practice is to simply write in the email
(sent for OTP) that they can ignore the email if not triggered by them. This will avoid the
usual panic that these sorts of emails cause.

Security Recommendations

SR-ENTE-001 - Clear note on how passwords are handled. (Info)

Some fake passwords are hardcoded but it was informed that production.yaml is used for
real passwords and are not publicly uploaded to GitHub. It is used directly in the server
machine through a secure channel. GitHub users might think that those fake passwords are
real ones and that is what they need to change leading to a bad security practice. There was
no document documenting this practice of fetching password from a secure endpoint, so it is
recommended to make a clear note of how passwords and sensitive api keys are handled in
README or any other supporting doc.

SR-ENTE-002 - Delete the commit history before making the repo public. (Info)

Sensitive third party Api key was found in the commit history, so it is recommended to go
with a fresh repo and paste the contents in that repo. Otherwise GitHub has this document
which can be followed to delete the history
https://docs.qithub.com/en/authentication/keeping-your-account-and-data-secure/removing-s
ensitive-data-from-a-repository. It is also recommended to set up a scanner which scans for
sensitive data in the repository on every push.

19.04.2023 7/8

https://fallible.co/
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/removing-sensitive-data-from-a-repository
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/removing-sensitive-data-from-a-repository

Fallible
hello@fallible.

Notes

Some test passwords for databases and Minio were found in the repository. It is requested to
verify that they are not for any live databases.

Private vulnerability reporting, together with the rest of GitHub’s security capabilities like
Dependabot, code scanning, and secret scanning, which is free for public repositories, will
also be very helpful for the security of the repository going forward.

Conclusion

It is good to see that the Ente team has taken steps to address the issue of using
math/random instead of crypto/random to generate one-time passwords and referral

codes.

It's also worth noting that the use of "COPY . ." in a Dockerfile and the lack of a USER
command were identified as potential security issues. While these are lower priority issues,
it's still important to address them to maintain the overall security of the system.

Finally, the use of Access-Control-Allow-Origin (ACAO) set to "*" and the passing of sensitive
tokens in query params were identified as potential security risks. It's important to mitigate
these risks by setting ACAOQ to specific origins and avoiding passing sensitive tokens in
query params.

The audit did not reveal any critical, high, or medium-level (unaddressed) security issues.
This is a positive outcome as it means that the application has been developed with security
in mind, and any potential vulnerabilities have been addressed before deployment. However,
it's still important to remain vigilant and continue to conduct regular security scans to ensure
that the application remains secure over time. With the absence of critical, high, or
medium-level issues, the team can now focus on addressing any lower-level security issues
and continuing to enhance the overall security posture of the application.

https://fallible.co/
https://docs.github.com/en/code-security/security-advisories/repository-security-advisories/configuring-private-vulnerability-reporting-for-a-repository
https://docs.github.com/code-security/dependabot/dependabot-alerts/about-dependabot-alerts
https://docs.github.com/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning
https://docs.github.com/code-security/secret-scanning/about-secret-scanning

